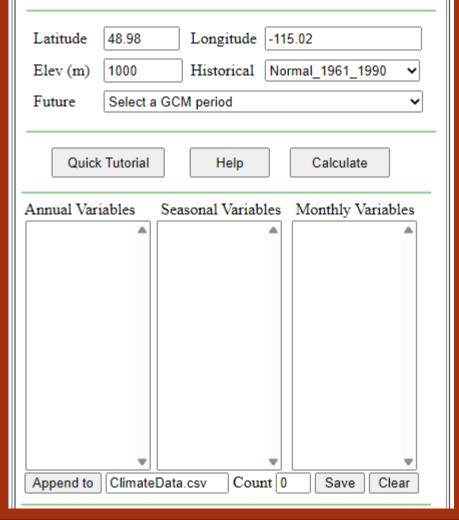
Forest Management in the Era of Climate Change

Kevin Keys, PhD, RPF Project Scientist Family Forest Network

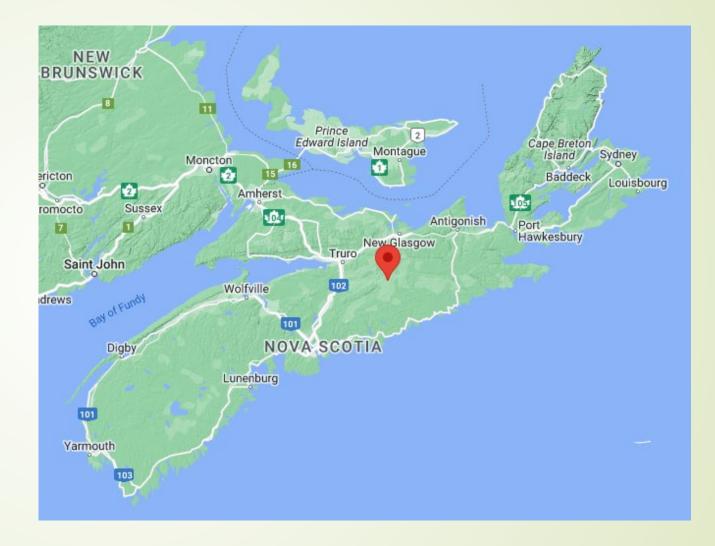
1. Climate change (CC) is real, and it will affect different regions in different ways – FACT and PROJECTION


 In Nova Scotia, CC will lead to warmer average and seasonal temperatures – PROJECTION

3. In Nova Scotia, CC will lead to higher precipitation levels, but with relatively more winter precipitation and less evenly distributed rainfall – PROJECTION

-- An Interactive Platform for Visualization and Data Access

Coordinates Input (click on the map or type in coordinates)


https://climatena.ca/mapVersion (Google: ClimateNA map)

-- An Interactive Platform for Visualization and Data Access

Coordinates Input (click on the map or type in coordinates)

Latitude Elev (m) Future	45.220 194 Select a		.780 rmal_1961_1990 V
Quick Tutorial		Help	Calculate
Annual Vari MAT=5.3 MWMT=17.3 MCMT=-6.6 TD=23.9 MAP=1338 MSP=496 AHM=11.4 SHM=34.9 DD_0=734 DD_0=734 DD5=1558 DD_18=469 DD18=72 NFFD=154 bFFP=148 <u>eFEP=271</u> Append to	3	Seasonal Variables Tmax_wt=-1.1 Tmax_sp=7.8 Tmax_sm=21.4 Tmax_at=12.5 Tmin_wt=-10.2 Tmin_sp=-1.9 Tmin_sm=10.4 Tmin_at=3.3 Tave_wt=-5.6 Tave_wt=-5.6 Tave_sp=2.9 Tave_sm=15.9 Tave_at=7.9 PPT_wt=375 PPT_sp=307 PPT_sm=301 Data.csv Count 0	Monthly Variables Tmax_01=-1.8 Tmax_02=-1.8 Tmax_03=1.9 Tmax_04=7.5 Tmax_05=13.9 Tmax_05=13.9 Tmax_06=19 Tmax_07=22.8 Tmax_09=18.4 Tmax_10=12.5 Tmax_11=6.5 Tmax_11=6.5 Tmax_11=6.5 Tmax_12=0.3 Tmin_01=-11.2 Tmin_02=-11.4 Tmin_03=-7

Sample Location Data – Recorded and Projected

* 13GCMs_ensemble_ssp126** 13GCMs_ensemble_ssp585

			Drojection	Drojection
			Projection	Projection
			Current	Current
Climate Variable	Normals	Decade	Best Scenario*	Worst Scenario**
	1960-1990	2011-2020	2041-2070	2041-2070
Mean Annual Temp				
(°C)	5.3	6.2	7.9	9.0
Winter Avg	-5.6	-4.3	-2.6	-1.4
Winter Min	-10.2	-9.0	-7.5	-6.4
Winter Max	-1.1	+0.5	+2.3	+3.6
Summer Avg	15.9	16.8	18.4	19.6
Summer Min	10.4	11.2	13.0	14.1
Summer Max	21.4	22.4	23.9	25.0
Mean Annual Precip				
(mm)	1,338	1,464	1,427	1,443
				·
Winter	375	394	407	422
Summer	301	327	324	322

4. In Nova Scotia, CC will lead to more frequent and/or more severe wind disturbance events (hurricanes, tropical storms, other) – PROJECTION

- 5. Projected changes in temperature and precipitation patterns will mean wetter, warmer winters with little to no reliable frozen ground conditions FACT and ASSUMPTION
- 6. Higher spring-fall temperatures combined with uneven rainfall will lead to increased risk and frequency of summer drought PROJECTION and ASSUMPTION

8

7. Tree species (and all plants) are adapted to finite and optimal ranges of climate conditions related to temperature and precipitation patterns – FACT

Climatic "niches" will change more for some tree species than others, and/or will change faster than species can adapt – PROJECTION

 This means there will be tree species "winners" and "losers" as CC impacts progress – ASSUMPTION and PROJECTION

Potential Winners and Losers....

Species	Projection	
Balsam Fir	Decline	
Black Spruce	Decline?	
Hemlock	Persevere*	
Jack Pine	Decline?	
Larch	Unclear	
Red maple	Proliferate	
Red Oak	Proliferate	
Red Pine	Decline	
Red Spruce	Isolated Patches?	
Sugar Maple	Persevere	
Trembling Aspen	Unclear	
White Ash	Propser*	
White Birch	Decline	
White Pine	Prosper	
White Spruce	Decline	
Yellow Birch	Isolated Patches?	

Source: de Graaf, M. 2018. Climate Change Resilience in the Acadian Forest: A Review. 2018. Community Forests International.

Reviewed and interpreted projections from three different studies.

10.CC will cause new stresses (or exacerbate existing stresses) that can (or will) reduce overall forest vigour and health – FACT and PROJECTION

11.A healthy, diverse forest is the best defence against climate change and other stresses – FACT

12.We can start to manage forests now to be more CC resilient – FACT

13. CC adaptive management may mean thinking outside the box and trying new harvest and silviculture approaches – FACT

14. CC adaptive management may mean accepting that future forests will look different than current forests – FACT

15. We don't have all the answers, so we need to continually monitor, evaluate, and adapt as we move forward – FACT A healthy, diverse forest is the best defence against climate change and other stresses....

This means managing for:

- Biodiversity (maintenance/enhancement)
 - Healthy soils
- Multiple tree species that are ecologically adapted to the site
- Multiple age classes and/or diverse vertical and horizontal structure
- Wind firmness/resilience

A healthy, diverse forest is the best defence against climate change and other stresses....

This also means being on the lookout for:

- New or worsening changes in tree vigour
- New insect or disease threats
- Invasive plant species
- Changes in tree phenology

In summary, we need active and adaptive ecological forest management

Some "newer" management options and ideas...

- High or medium retention irregular shelterwood harvests (continuous or gap) with focus on restoration and/or climate adaptation
- Underplanting stands with LIT hardwood species
- Liming to offset lingering impacts of acid rain on forest soil nutrient levels (especially calcium)
- Restoration thinning in "too-tall" regenerating stands to favour LIT species and build future wind resilience
- Actively managing for carbon storage

Some other initiatives we are pursuing...

In addition to ecological forestry research that is the focus of the FFN project, we are also looking at other complimentary initiatives:

- A woodland owner focussed climate vulnerability and adaptation (CVA) assessment in collaboration with experts at UBC
- A new, multi-partner, province-wide forest soil sampling and health assessment program
- Promoting an active wild seed collection program in collaboration with the Federal/Provincial 2-Billion Trees (2BT) program

Thank You

Questions...

Don't treat soil like dirt!

